A Comparative Study of Fungal Community Structure, Diversity and Richness between the Soil and the Phyllosphere of Native Grass Species in a Copper Tailings Dam in Shanxi Province, China

Author:

Jia Tong,Wang Ruihong,Fan Xiaohui,Chai Baofeng

Abstract

In the study area, mining processes have led to the accumulation of a large amount of ore sand and a tailings dam was established above this artificial overburden. After a long period of restoration, the area was reclaimed by a variety of native vegetation. This study investigated four of these native grass species, namely, Bothriochloa ischaemum, Imperata cylindrica, Elymus dahuricus and Calamagrostis epigejos, having reestablished themselves after the restoration of a copper tailings dam built in 1969 in Shanxi Province, China. We analyzed the fungal community structure in the soil and the phyllosphere of the four native grass species using high-throughput sequencing. Results showed that the soil of the tailings dam was weakly alkaline and copper (Cu) was the most pervasive element present. Ascomycota were the dominant fungal taxa in the soil and the phyllosphere of all four native grass species, for which total soil nitrogen (N) content was an influencing factor. Basidiomycota was positively correlated to cadmium (Cd), which can additionally be used as an indicator of Cd pollution in copper tailings dams. Among the four native grass species, Nectriaceae was the dominant fungal family found exclusively in B. ischaemum; Meruliaceae and Phaeosphaeriaceae were the dominant fungal families of E. dahuricus; Cordycipitaceae and Sporormiaceae were only found in C. epigejos. However, we found no evidence of a dominant fungal family in I. cylindrica. Furthermore, Erythrobasidiales sp., which had the highest betweenness centrality after network analysis, was identified as the key fungal species in all four native grass species.

Funder

National Natural Science Foundation of China

Shanxi Province Science Foundation for Youths

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3