Author:
Kim Dong-Rak,Kang Jin-Wook,Eom Tae-Ho,Kim Jun-Mo,Lee Jeong,Won Chung-Yuen
Abstract
Recent developments in high-density lithium-ion battery technologies have greatly expanded the electric vehicle (EV) market. Due to the fact that the rapid charging of an EV battery pack while maintaining a suitable cell cycle life is necessary for further growth of the EV market, we herein propose an innovative adaptive rapid charging pattern that minimizes cell degradation and reflects the degradation characteristics. This technology is advantageous in that cells can be developed by analyzing the charging characteristics in the latter stages of cell development of the rapid charging pattern, while also considering the complexity and heterogeneity of the manufacturing process. Furthermore, the battery charging pattern is optimized and controlled in real-time by reflecting the characteristics of the battery module and pack degradation as the cycle number is increased. More specifically, we present a preliminary study that simplifies the implementation of the new optimization pattern to improve the cell cycle life by over 45% in comparison to conventional fast charging patterns, and to address the drop in capacity in the latter half of cell life during rapid charging.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献