Energy Management Strategy for the Hybrid Energy Storage System of Pure Electric Vehicle Considering Traffic Information

Author:

Hu Jianjun,Jiang Xingyue,Jia Meixia,Zheng Yong

Abstract

The main challenge for the pure electric vehicles (PEVs) with a hybrid energy storage system (HESS), consisting of a battery pack and an ultra-capacitor pack, is to develop a real-time controller that can achieve a significant adaptability to the real road. In this paper, a comprehensive controller considering the traffic information is proposed, which is composed of an adaptive rule-based controller (main controller) and a fuzzy logic controller (auxiliary controller). Through analyzing the dynamic programming (DP) based power allocation of HESS, a general law for the power allocation of HESS is acquired and an adaptive rule-based controller is established. Then, to further enhance the real-time performance of the adaptive rule-based controller, traffic information, which consists of the traffic condition and road grade, is considered, and a novel method combining a K-means clustering algorithm and traffic condition is proposed to predict the future trend of vehicle speed. On the basis of the obtained traffic information, a fuzzy logic controller is constructed to provide the correction for the power allocation in the adaptive rule-based controller. Ultimately, the comparative simulations among the traditional rule-based controller, the adaptive rule-based controller, and the comprehensive controller are conducted, and the results indicate that the proposed adaptive rule-based controller reduces battery life loss by 3.76% and the state of change (SOC) consumption by 3.55% in comparison with the traditional rule-based controller. Furthermore, the comprehensive controller possesses the most excellent performance and reduces the battery life loss by 2.98% and the SOC consumption of the battery by 1.88%, when compared to the adaptive rule-based controller.

Funder

Natural Science Foundation of Chongqing

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3