Abstract
Continuous authentication systems for mobile devices focus on identifying users according to their behaviour patterns when they interact with mobile devices. Among the benefits provided by these systems, we highlight the enhancement of the system security, having permanently authenticated the users; and the improvement of the users’ quality of experience, minimising the use of authentication credentials. Despite the benefits of these systems, they also have open challenges such as the authentication accuracy and the adaptability to new users’ behaviours. Continuous authentication systems should manage these challenges without forgetting critical aspects of mobile devices such as battery consumption, computational limitations and response time. With the goal of improving these previous challenges, the main contribution of this paper is the design and implementation of an intelligent and adaptive continuous authentication system for mobile devices. The proposed system enables the real-time users’ authentication by considering statistical information from applications, sensors and Machine Learning techniques based on anomaly detection. Several experiments demonstrated the accuracy, adaptability, and resources consumption of our solution. Finally, its utility is validated through the design and implementation of an online bank application as proof of concept, which allows users to perform different actions according to their authentication level.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献