Adaptive Filtering: Issues, Challenges, and Best-Fit Solutions Using Particle Swarm Optimization Variants

Author:

Khan Arooj1,Shafi Imran1,Khawaja Sajid Gul1,de la Torre Díez Isabel2ORCID,Flores Miguel Angel López345ORCID,Galvlán Juan Castañedo367ORCID,Ashraf Imran8ORCID

Affiliation:

1. College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

2. Department of Signal Theory and Communications and Telematic Engineering, University of Valladolid, Paseo de Belén 15, 47011 Valladolid, Spain

3. Research Group on Foods, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain

4. Research Group on Foods, Universidad Internacional Iberoamericana, Campeche 24560, Mexico

5. Instituto Politécnico Nacional, UPIICSA, Ciudad de Mexico 04510, Mexico

6. Universidad Internacional Iberoamericana Arecibo, Arecibo, PR 00613, USA

7. Department of Projects, Universidade Internacional do Cuanza, Cuito EN250, Bié, Angola

8. Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Adaptive equalization is crucial in mitigating distortions and compensating for frequency response variations in communication systems. It aims to enhance signal quality by adjusting the characteristics of the received signal. Particle swarm optimization (PSO) algorithms have shown promise in optimizing the tap weights of the equalizer. However, there is a need to enhance the optimization capabilities of PSO further to improve the equalization performance. This paper provides a comprehensive study of the issues and challenges of adaptive filtering by comparing different variants of PSO and analyzing the performance by combining PSO with other optimization algorithms to achieve better convergence, accuracy, and adaptability. Traditional PSO algorithms often suffer from high computational complexity and slow convergence rates, limiting their effectiveness in solving complex optimization problems. To address these limitations, this paper proposes a set of techniques aimed at reducing the complexity and accelerating the convergence of PSO.

Funder

European University of Atlantic

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference146 articles.

1. Kennedy, J., and Eberhart, R. (December, January 27). Particle swarm optimization. Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia.

2. Djaneye-Boundjou, O.S.E. (2013). Particle Swarm Optimization Stability Analysis. [Doctoral’s Dissertation, University of Dayton].

3. Particle swarm optimization;Shi;IEEE Connect.,2004

4. Particle swarm optimization of microstrip antennas for wireless communication systems;Minasian;IEEE Trans. Antennas Propag.,2013

5. A review of particle swarm optimization. Part I: Background and development;Banks;Nat. Comput.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3