Glendonite-Like Carbonate Aggregates from the Lower Ordovician Koporye Formation (Russian Part of the Baltic Klint): Detailed Mineralogical and Geochemical Data and Paleogeographic Implications

Author:

Mikhailova ,Vasileva ,Fedorov ,Ershova ,Vereshchagin ,Rogov ,Pokrovsky

Abstract

Stellate and plate-like carbonate bodies, traditionally called anthraconites, are found throughout the Baltic-Ladoga Klint in bituminous shale of the Koporye Formation (Tremadocian, Lower Ordovician). Although this time interval is usually considered as a greenhouse, there is some evidence for the existence of at least temporary cold conditions during the Cambrian–Ordovician. However, the origin of anthraconites is still strongly debated. We studied the mineralogical, petrographic, cathodoluminescence, geochemical, and isotopic characteristics of anthraconites from five sections of the Russian part of the Baltic paleobasin. A close similarity between the morphological, petrographic, cathodoluminescence, and isotopic characteristics of the studied anthraconites with those of glendonites allow us to suggest that these bodies formed in a similar paleo-environment and should be considered as pseudomorphs of the mineral ikaite. The oxygen and carbon isotope ratios reveal that ikaite precipitation occurred in low-temperature conditions on the seafloor. The carbon isotopic values reveal influence of inorganic seawater carbon along with organic matter decomposition and/or methane oxidation during ikaite-glendonite transformations. The oxygen isotopic composition significantly changed after deposition due to meteoric diagenesis. We propose that the studied Tremadocian anthraconites formed under a region of upwelling, where cold phosphate-rich deep waters rose to the relatively shallow part of the Baltic paleobasin, providing favorable conditions for ikaite precipitation. Based on our cathodoluminescence study, we suggest that ikaite was transformed to calcite over several stages during diagenesis. Mineralogical studies also reveal that primary calcite was transformed to sulfate (gypsum) or dolomite during late superimposed processes.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference60 articles.

1. Earth History and Palaegeography;Torsvik,2016

2. Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans

3. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations

4. Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction

5. Carbon and oxygen isotope composition of Cambro-Silurian limestone and anthraconite from Bornholm: Evidence for deep burial diagenesis;Buchardt;Bull. Geol. Soc. Den.,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3