Potential Impact of a Large-Scale Cascade Reservoir on the Spawning Conditions of Critical Species in the Yangtze River, China

Author:

Yu MeixiuORCID,Yang Daqing,Liu XiaolongORCID,Li Qiongfang,Wang Guoqing

Abstract

Dam building and reservoir operations alter the downstream hydrological regime, and as a result, affect the health of the river aquatic ecosystem, particularly for large-scale cascade reservoirs. This study investigated the impact of the Gezhouba Reservoir (GR) and the Three Gorges Reservoir (TGR) on the spawning conditions of two critical taxa, i.e., the endemic four major carps and the endangered Chinese sturgeon in the Yangtze River. We analyzed the flow, sediment, and thermal regime in these two taxa spawning seasons and compared their features between the predam and postdam periods. Our results revealed that the GR and the TGR had altered the frequency distributions of flow, sediment, and water temperature to different degrees, with the impact by the GR on the carps and Chinese sturgeon ranked as water temperature > flow, sediment > water temperature > flow, and the effect of the TGR on these two taxa were ordered as flow > water temperature, sediment > flow > water temperature. For the GR, the satisfying degree of the suitable flow and water temperature of the carps increased, whilst the suitable flow, sediment, and water temperature for the Chinese sturgeon decreased. These changes in TGR showed a significant ascending (descending) trend in the suitable flow (water temperature) for the carps, and a clear decreasing trend in the flow, sediment, and temperature for Chinese sturgeon. Both the TGR and the GR had negative impacts on the spawning of these two taxa in terms of the rising/falling flow characteristics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3