Real-Time On-Site Monitoring of Viruses in Wastewater Using Nanotrap® Particles and RICCA Technologies

Author:

Sharma Vishnu1,Takamura Hitomi2,Biyani Manish1ORCID,Honda Ryo2ORCID

Affiliation:

1. BioSeeds Corporation, Ishikawa Create Labo-202, Asahidai 2-13, Nomi 923-1211, Ishikawa, Japan

2. Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1164, Ishikawa, Japan

Abstract

Wastewater-based epidemiology (WBE) is an effective and efficient tool for the early detection of infectious disease outbreaks in a community. However, currently available methods are laborious, costly, and time-consuming due to the low concentration of viruses and the presence of matrix chemicals in wastewater that may interfere with molecular analyses. In the present study, we designed a highly sensitive “Quick Poop (wastewater with fecal waste) Sensor” (termed, QPsor) using a joint approach of Nanotrap microbiome particles and RICCA (RNA Isothermal Co-Assisted and Coupled Amplification). Using QPsor, the WBE study showed a strong correlation with standard PEG concentrations and the qPCR technique. Using a closed format for a paper-based lateral flow assay, we were able to demonstrate the potential of our assay as a real-time, point-of-care test by detecting the heat-inactivated SARS-CoV-2 virus in wastewater at concentrations of 100 copies/mL and within one hour. As a proof-of-concept demonstration, we analyzed the presence of viral RNA of the SARS-CoV-2 virus and PMMoV in raw wastewater samples from wastewater treatment plants on-site and within 60 min. The results show that the QPsor method can be an effective tool for disease outbreak detection by combining an AI-enabled case detection model with real-time on-site viral RNA extraction and amplification, especially in the absence of intensive clinical laboratory facilities. The lab-free, lab-quality test capabilities of QPsor for viral prevalence and transmission in the community can contribute to the efficient management of pandemic situations.

Funder

Cabinet Secretariat of the Japanese Government

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3