Engineering Attributes of Ternary Geopolymer Mortars Containing High Volumes of Palm Oil Fuel Ash: Impact of Elevated Temperature Exposure

Author:

Huseien Ghasan Fahim1,Kubba Ziyad2ORCID,Ghoshal Sib Krishna3

Affiliation:

1. Institute of Architecture and Construction, South Ural State University, Lenin Prospect 76, 454080 Chelya-binsk, Russia

2. Department of Civil Engineering, College of Engineering, Al-Muthanna University, Samawa 66001, Iraq

3. Department of Physics and Laser Centre, AOMRG, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia

Abstract

Geopolymer mortars made from various waste products can appreciably reduce carbon dioxide emissions and landfill-related issues, making them viable substitutes for ordinary Portland cement, a workhorse in the concrete industry. Thus, a series of ternary geopolymer mortars were made and characterized to determine the effects of exposure to elevated temperatures (from room temperature up to 900 °C) on their engineered (residual compressive strength, weight loss, and slant shear bond strength) and microstructural properties. These mortars, which contain fly ash, ground blast furnace slag, and a high volume of palm oil fuel ash, were designed to activate via the incorporation of an alkali activator solution at a low concentration (molarity of 4). The elevated temperature-mediated deterioration of the ternary geopolymer mortar was quantified using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The results revealed an improvement in the ternary geopolymer mortars’ resistance against elevated temperatures when the palm oil fuel ash level in the mortar matrix was raised from 50 to 70% and when slag was replaced by fly ash. It was asserted that the proposed ternary geopolymer mortars may contribute to the advancement of green concretes demanded by the construction sectors.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3