Numerical Analysis of Restrained Continuous Steel Columns under Standard Fire

Author:

Sun Jinhua1,Meng Fanqin2,Andisheh Kaveh3,Clifton George Charles4ORCID

Affiliation:

1. Audit Department, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Structural Fire Research Engineering, Heavy Engineering Research Association, Auckland 2104, New Zealand

3. General Manager Structural Systems, Heavy Engineering Research Association, Auckland 2104, New Zealand

4. Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1023, New Zealand

Abstract

The steel column performance in realistic structures during a fire has yet to be fully understood because existing research emphasizes single-story performance, thereby disregarding the influence of continuous steel columns in multi-story configurations devoid of fire. This paper presents a numerical study to comprehend the overall structural fire performance of continuous steel columns, considering the effect of loading ratios, restraint ratios, column continuity, and single-sided lateral moments. An advanced numerical model was initially developed using ABAQUS and validated against experimental tests. The validated numerical model was subsequently employed to investigate the effects of several parameters, including axial restraint ratios (α = 0.05–0.35) and axial load ratios (n = 0.3–0.8). The study findings indicated that the restraint ratios within the designed range have a slightly beneficial impact on the fire resistance of continuous steel columns. The column continuity did not exert a significant impact on the performance of steel columns in fire. Additionally, the comparison showed that the current design approach in EN 1993-1-2 was conservative for predicting the limiting temperature of internal and edge columns.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3