Evaluation of Air Quality inside Self-Contained Breathing Apparatus Used by Firefighters

Author:

Kim Soo Jin12ORCID,Ham Seunghon3ORCID

Affiliation:

1. Department of Epidemiology, Graduated School of Public Health, Seoul National University, Seoul 03312, Republic of Korea

2. Seoul Metropolitan Fire & Disaster Headquarters, Seoul 03312, Republic of Korea

3. Department of Occupational and Environmental Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea

Abstract

(1) Background: When a fire breaks out, combustibles are burned and toxic substances such as carbon monoxide (CO), polycyclic aromatic hydrocarbons (PAH), benzene, and hydrogen cyanide are produced. The purpose of this study is to evaluate the air quality inside self-contained breathing apparatus (SCBA) by comparing it to that in the environment where the SCBA charger is installed. (2) Methods: The design of this study was a simulation-based case-control experiment study, and the experiment was conducted at two fire stations located on land and on water. When charging the SCBA, it was differentiated according to the presence or absence of exposure to harmful substances and the degree of exposure. The air quality inside the SCBA in the charging room installed in the fire station garages located on land and in the water, which were not completely isolated from harmful substances, was evaluated. CO, carbon dioxide (CO2), water, and oil mist were measured and analyzed to determine the air quality inside the SCBA. (3) Results: In the case of land firefighting stations, the mean CO among the SCBA internal air quality items was 20 times higher than the outside the SCBA, and higher than the safe range in the group with the highest exposure at the sites of firefighting buildings completely isolated from hazardous substances. The CO levels of all items of water were analyzed to be higher than the safe range in the floating fire station. (4) Conclusions: It was confirmed that the installation environment of an SCBA charging room can affect the safety of the charged internal air quality components. The results of this study can be actively used for the operation and management of SCBA charging room environments when building firefighting buildings in the future for the hygiene, safety, and health of firefighters.

Funder

Seoul Metropolitan Fire Service Academy, Fire Science Research Center Research Project

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3