Abstract
Urinary tract infections (UTIs) are a leading hospital-acquired infection. Although timely detection of causative pathogens of UTIs is important, rapid and accurate measures assisting UTI diagnosis and bacterial determination are poorly developed. By reading infrared spectra of urine samples, Fourier-transform infrared spectroscopy (FTIR) may help detect urine compounds, but its role in UTI diagnosis remains uncertain. In this pilot study, we proposed a characterization method in attenuated total reflection (ATR)-FTIR spectra to evaluate urine samples and assessed the correlation between ATR-FTIR patterns, UTI diagnosis, and causative pathogens. We enrolled patients with a catheter-associated UTI in a subacute-care unit and non-UTI controls (total n = 18), and used urine culture to confirm the causative pathogens of the UTIs. In the ATR-FTIR analysis, the spectral variation between the UTI group and non-UTI, as well as that between various pathogens, was found in a range of 1800–900 cm−1, referring to the presence of specific constituents of the bacterial cell wall. The results indicated that the relative ratios between different area zones of vibration, as well as multivariate analysis, can be used as a clue to discriminate between UTI and non-UTI, as well as different causative pathogens of UTIs. This warrants a further large-scale study to validate the findings of this pilot research.
Funder
Ministry of Science and Technology of Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献