Stackelberg Population Dynamics: A Predictive-Sensitivity Approach

Author:

Mojica-Nava EduardoORCID,Ruiz FredyORCID

Abstract

Hierarchical decision-making processes traditionally modeled as bilevel optimization problems are widespread in modern engineering and social systems. In this work, we deal with a leader with a population of followers in a hierarchical order of play. In general, this problem can be modeled as a leader–follower Stackelberg equilibrium problem using a mathematical program with equilibrium constraints. We propose two interconnected dynamical systems to dynamically solve a bilevel optimization problem between a leader and follower population in a single time scale by a predictive-sensitivity conditioning interconnection. For the leader’s optimization problem, we developed a gradient descent algorithm based on the total derivative, and for the followers’ optimization problem, we used the population dynamics framework to model a population of interacting strategic agents. We extended the concept of the Stackelberg population equilibrium to the differential Stackelberg population equilibrium for population dynamics. Theoretical guarantees for the stability of the proposed Stackelberg population learning dynamics are presented. Finally, a distributed energy resource coordination problem is solved via pricing dynamics based on the proposed approach. Some simulation experiments are presented to illustrate the effectiveness of the framework.

Funder

Fondazione Politecnico di Milano

Publisher

MDPI AG

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3