Effects of MAT1-2 Spore Ratios on Fruiting Body Formation and Degeneration in the Heterothallic Fungus Cordyceps militaris

Author:

Vu Tao Xuan12,Thai Hanh-Dung1,Dinh Bich-Hang Thi1,Nguyen Huong Thi1,Tran Huyen Thi Phuong1,Bui Khanh-Linh Thi1,Tran Tram Bao2,Pham Hien Thanh3,Mai Linh Thi Dam3,Le Diep Hong3,Nguyen Huy Quang13ORCID,Tran Van-Tuan13ORCID

Affiliation:

1. National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam

2. Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi 100000, Vietnam

3. Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam

Abstract

The medicinal mushroom Cordyceps militaris is widely exploited in traditional medicine and nutraceuticals in Asian countries. However, fruiting body production in C. militaris is facing degeneration through cultivation batches, and the molecular mechanism of this phenomenon remains unclear. This study showed that fruiting body formation in three different C. militaris strains, namely G12, B12, and HQ1, severely declined after three successive culturing generations using the spore isolation method. PCR analyses revealed that these strains exist as heterokaryons and possess both the mating-type loci, MAT1-1 and MAT1-2. Further, monokaryotic isolates carrying MAT1-1 or MAT1-2 were successfully separated from the fruiting bodies of all three heterokaryotic strains. A spore combination of the MAT1-1 monokaryotic isolate and the MAT1-2 monokaryotic isolate promoted fruiting body formation, while the single monokaryotic isolates could not do that themselves. Notably, we found that changes in ratios of the MAT1-2 spores strongly influenced fruiting body formation in these strains. When the ratios of the MAT1-2 spores increased to more than 15 times compared to the MAT1-1 spores, the fruiting body formation decreased sharply. In contrast, when MAT1-1 spores were increased proportionally, fruiting body formation was only slightly reduced. Our study also proposes a new solution to mitigate the degeneration in the heterokaryotic C. militaris strains caused by successive culturing generations.

Funder

Vietnam National University, Hanoi

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3