Distributed Event-Triggered Optimal Algorithm Designs for Economic Dispatching of DC Microgrid with Conventional and Renewable Generators: Actuator-Based Control and Optimization

Author:

Shi Wenming12,Lv Xianglian12,He Yang12

Affiliation:

1. Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China

2. Shaan’xi Key Lab of MEMS/NEMS, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Actuators play a crucial role in modern distributed electric grids and renewable energy network architectures, implementing control actions based on sensor data to ensure optimal system performance and stability. This paper addresses the economic dispatch (ED) problem of distributed DC microgrids with renewable energy. In these systems, numerous sensors and actuators are integral for monitoring and controlling various parameters to ensure optimal performance. A new event-triggered distributed optimization algorithm in the discrete time domain is employed to ensure the minimum production cost of the power grid. This algorithm leverages data from sensors to make real-time adjustments through actuators, ensuring the maximum energy utilization rate of renewable generators (RGs) and the minimum cost of conventional generators (CGs). It realizes the optimal synergy between conventional energy and renewable energy. Compared to the continuous sampling optimization algorithm, the event-triggered control (ETC) optimization algorithm reduces the frequency of communication and current sampling, thus improving communication efficiency and extending the system’s lifetime. The use of actuators in this context is crucial for implementing these adjustments effectively. Additionally, the convergence and stability of the DC microgrid are proven by the designed Lyapunov function. Finally, the effectiveness of the proposed optimization algorithm is validated through simulations of the DC microgrid.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3