Soft Robotic System with Continuum Manipulator and Compliant Gripper: Design, Fabrication, and Implementation

Author:

Qaddoori Fenjan Shakir1,Fathollahi Dehkordi Siavash1ORCID

Affiliation:

1. Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz P.O. Box 6135783151, Khuzestan, Iran

Abstract

This paper presents the design, construction, and implementation of a soft robotic system comprising a continuum manipulator arm equipped with a compliant gripper. Three main objectives were pursued: (1) developing a soft silicone gripper as an alternative to expensive and rigid steel grippers, enabling safe and precise handling of delicate or irregular objects such as fruits, glassware, and irregular shapes; (2) fabricating a continuum manipulator arm with robotic joints inspired by vertebrae, allowing for smooth, non-linear motion and more excellent maneuverability compared to traditional rigid arms, enabling access to hard-to-reach areas; and (3) integrating the compliant gripper with the continuum manipulator and implementing a control system for the soft gripper and remote bending arm using a microcontroller. The soft gripper, manipulator arm vertebrae, and other components were fabricated using 3D printing with PLA material for the molds. The gripper construct used hyperelastic silicone (Ecoflex 00.30). The continuum manipulator achieved a higher degree of freedom and mobility, while simulations and experiments validated the design’s effectiveness. The comparison shows that the close agreements differ by only 2.5%. In practical experiments involving lifting objects, the gripper was able to carry items with a greater mass. The proposed soft, integrated robotic system outperformed traditional rigid approaches, offering safe and flexible handling capabilities in unstructured environments. The nature-inspired design enabled a compliant grip and enhanced maneuverability, making it suitable for various applications requiring dexterous manipulation of delicate or irregularly shaped objects.

Funder

Research Council of Shahid Chamran University of Ahvaz

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3