Mobility of Radiogenic Helium in Amphibole

Author:

Tolstikhin Igor,Tarakanov Sergei,Kolobov Vitalii,Gannibal Maria

Abstract

Recently experiments on He extraction from an amphibole by the incremental heating unexpectedly revealed that the He release pattern depends on the heating rate. During slow heating (~4 K·min−1) of the amphibole grains, one smooth peak of the He flux from the mineral was observed; in contrast, during fast heating (~40 K·min−1) an additional sharp peak appeared at a temperature about 750 °C. In order to explain these observations, we developed a model of He diffusion from the amphibole, which allowed the calculated He fluxes from the mineral to be reconciled with those observed. From the modelling we derived: (i) the helium diffusion domain size distribution, and evolution of the distribution in the course of incremental heating; (ii) occurrence of the tensile stresses, operating under enhanced temperatures above 700 °C. The stresses are different in sites with the different local thermal expansion of the crystalline lattice and they increase the He diffusion flux. The model can be applied to other minerals (materials).

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3