Abstract
This study examines two pegmatitic monazite samples (2a and 4b, these numbers are related to a previous study) to determine their crystal chemistry and effects of internal radiation damage using synchrotron high-resolution powder X-ray diffraction and electron-probe micro-analysis. Both the huttonite and cheralite substitutions are discussed. Rietveld structure refinement of sample 2a shows three different phases [2a = monazite-(Ce), 2b = monazite-(Ce), and 2c = xenotime-(Y)] with distinct structural parameters. The changes among the unit-cell parameters between the two monazite-(Ce) phases is more pronounced in the a followed by the b and c unit-cell parameters. Sample 4a is a single-phase monazite-(Sm) that contains 0.164 apfu Th. Phase 2c with space group I41/amd arises from redistribution of La, Ce, Pr, Nd, Sm, Gd, Dy, Si, and Y atoms from those in monazite (space group P21/n). A possible cause for the phase transition from monazite-(Ce) to xenotime-(Y) is α-radiation events over a long geological time. However, other chemical processes cannot be ruled out as a cause for the transition.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献