Kinetics of the Thermal Decomposition of Rhodochrosite

Author:

Reyes Iván A.ORCID,Flores Mizraim,Palacios Elia G.ORCID,Islas Hernán,Juárez Julio C.ORCID,Reyes Martín,Teja Aislinn M.ORCID,Pérez Cristóbal A.ORCID

Abstract

Manganese is a widely used element in the steel industry; its main source is a mineral named rhodochrosite (MnCO3). For industrial usage, rhodochrosite is reduced to different manganese oxides by means of nodulation furnaces. In this study, rhodochrosite was thermally analyzed at temperatures ranging from 100 °C to 1200 °C. XRD (Powder X-ray diffraction), XRF (X-ray fluorescence), AAS (Atomic Absorption Spectrometry), and FESEM-EDX (Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry) were used to characterize the mineral and the residues were analyzed by XRD and FTIR (Fourier-transform infrared spectroscopy) to determine the stoichiometry of the thermal decomposition reactions. Three mass losses were observed, the first attributed to the transformation from carbonate to manganese (III) oxide, the second to the reduction to manganese tetroxide, and the third to the decomposition of calcium carbonate (CaCO3) present as a contaminant in the studied mineral. Thermal decomposition kinetics shows that the first mass loss required 17.91 kJ mol−1, indicating a control by mass transport-controlled process. For the second and third mass loss, the apparent activation energy of 112.41 kJ mol−1 and 64.69 kJ mol−1 was obtained respectively, indicating that both mass loss events were rate-controlled.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3