Influence of the Impeller Diameter and Off-Bottom Clearance on the Flow Velocity Distribution Characteristics Near the Bottom inside a Flotation Machine

Author:

Gao ShulingORCID,Meng LingguoORCID,Wei Dezhou,Zhao Qiang,Wang XuetaoORCID,Hou Duanxu

Abstract

The solid particle suspension inside a flotation machine is significantly dependent on the flow field, particularly the flow hydrodynamics characteristics near the bottom of the flotation machine. In this study, a laser Doppler anemometer (LDA) was utilized to investigate the influence of the impeller diameter and the impeller off-bottom clearance of a flotation machine on the flow velocity distribution characteristics near its bottom. The results showed that centripetal, centrifugal, and transitional spiral ascending vortexes were generated for different cases of the impeller variables. The impeller diameter and the off-bottom clearance were found to have a significant and interactive influence on the flow pattern, radial and axial velocities, velocity vector distribution, and axial fluctuating root mean square (RMS) velocity characteristics. When the centripetal flow was generated with a large impeller diameter and a small off-bottom clearance, the vortex stability was improved, the low-velocity distribution area was reduced near the bottom center, and the high axial RMS velocity distribution area was extended and became more consistent. The latter provided an advantageous condition for the momentum transfer between the liquid flow and the solid particles, as well as the airflow. However, the axial RMS velocity in the centrifugal flow formed in other cases of the impeller variables was less than that in the centripetal flow. Although the increase in the impeller off-bottom clearance contributed to increasing the velocity magnitude, this is certainly disadvantageous to the service life of the impeller blades, as expected from the high-velocity area extension. These results may provide a reference for the impeller design and optimization of a KYF (Kuang Yuan Flotation) flotation machine, as well as a basis for further investigation on the behavior of the dispersed phases inside a flow field.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3