Deformation Monitoring and Shape Reconstruction of Flexible Planer Structures Based on FBG

Author:

Wu HuifengORCID,Dong Rui,Liu Zheng,Wang Hui,Liang Lei

Abstract

To reduce the dependence of real-time deformation monitoring and shape reconstruction of flexible planar structures on experience, mathematical models, specific structural curvature (shape) sensors, etc., we propose a reconstruction approach based on FBG and a data-driven model; with the aid of ANSYS finite element software, a simulation model was built, and training samples were collected. After the machine learning training, the mapping relationship was established, which is between the strain and the deformation variables (in three directions of the x-, y-, z-axis) of each point of the surface of the flexible planar structure. Four data-driven models were constructed (linear regression, regression tree, integrated tree, and BP neural network) and comprehensively evaluated; the predictive value of the BP neural network was closer to the true value (R2 = 0.9091/0.9979/0.9964). Finally, the replication experiment on the flexible planar structure specimen showed that the maximum predictive error in the x-, y-, and z-axis coordinates were 2.93%, 35.59%, and 16.21%, respectively. The predictive results are highly consistent with the expected results of flexible planar structure deformation monitoring and shape reconstruction in the existing test environment. The method provides a new high-precision method for the real-time monitoring and shape reconstruction of flexible planar structures.

Funder

The Key Technology and Application of marine Deep Space Development and Utilization

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3