Abstract
Aiming at the problem of the weak dynamic performance of the gradient descent method in the attitude and heading reference system, the susceptibility to the interference of accelerometers and magnetometers, and the complex calculation of the nonlinear Kalman Filter method, an extended Kalman filter suitable for a low-cost magnetic, angular rate, and gravity (MARG) sensor system is proposed. The method proposed in this paper is a combination of a two-stage gradient descent algorithm and the extended Kalman filter (GDEKF). First, the accelerometer and magnetometer are used to correct the attitude angle according to the two-stage gradient descent algorithm. The obtained attitude quaternion is combined with the gyroscope measurement value as the observation vector of EKF and the calculated attitude of the gyroscope and the bias of the gyroscope are corrected. The elimination of the bias of the gyroscope can further improve the stability of the attitude observation results. Finally, the MARG sensor system was designed for mathematical model simulation and hardware-in-the-loop simulation to verify the performance of the filter. The results show that compared with the gradient descent method, it has better anti-interference performance and dynamic performance, and better measurement accuracy than the extended Kalman filter.
Funder
Beijing Municipal Natural Science Foundation
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献