Surface-Enhanced Raman Spectroscopic Investigation of PAHs at a Fe3O4@GO@Ag@PDA Composite Substrates

Author:

Liu Junyu,Cui Wencan,Sang Shihua,Guan Liang,Gu Kecheng,Wang Yinyin,Wang Jian

Abstract

A method for surface-enhanced Raman spectroscopy (SERS) sensing of polycyclic aromatic hydrocarbons (PAHs) is reported. Fe3O4@PDA@Ag@GO is developed as the SERS substrate prepared by classical electrostatic attraction method based on the enrichment of organic compounds by graphene oxide (GO) and polydopamine (PDA) and the good separation and enrichment function of Fe3O4. The morphology and structure of the SERS substrate were represented by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and the UV–visible absorption spectrum (UV–vis spectra). The effect of different temperatures on SERS during synthesis was investigated, and it was found that the best effect was achieved when the synthesis temperature was 90 °C. The effect of each component of Fe3O4@PDA@Ag@GO nanocomposites on SERS was explored, and it was found that Ag NPs are of great significance to enhance the Raman signal based on the electromagnetic enhancement mechanism; apart from enriching the polycyclic aromatic hydrocarbons (PAHs) through π–π interaction, GO also generates strong chemical enhancement to the Raman signal, and PDA can prevent Ag from shedding and agglomeration. The existence of Fe3O4 is favored for the fast separation of substrate from the solutions, which greatly simplifies the detection procedure and facilitates the cycle use of the substrate. The experimental procedure is simplified, and the substrate is reused easily. Three kinds of PAHs (phenanthrene, pyrene and benzanthene) are employed as probe molecules to verify the performance of the composite SERS substrate. The results show that the limit of detection (LOD) of phenanthrene pyrene and benzanthene detected by Fe3O4@PDA@Ag@GO composite substrate are 10−8 g/L (5.6 × 10−11 mol/L), 10−7 g/L (4.9 × 10−10 mol/L) and 10−7 g/L (4.4 × 10−10 mol/L), respectively, which is much lower than that of ordinary Raman, and it is promising for its application in the enrichment detection of trace PAHs in the environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3