Vision Feedback Control for the Automation of the Pick-and-Place of a Capillary Force Gripper

Author:

Ito Takatoshi,Fukuchi Eri,Tanaka Kenta,Nishiyama Yuki,Watanabe Naoto,Fuchiwaki OhmiORCID

Abstract

In this paper, we describe a newly developed vision feedback method for improving the placement accuracy and success rate of a single nozzle capillary force gripper. The capillary force gripper was developed for the pick-and-place of mm-sized objects. The gripper picks up an object by contacting the top surface of the object with a droplet formed on its nozzle and places the object by contacting the bottom surface of the object with a droplet previously applied to the place surface. To improve the placement accuracy, we developed a vision feedback system combined with two cameras. First, a side camera was installed to capture images of the object and nozzle from the side. Second, from the captured images, the contour of the pre-applied droplet for placement and the contour of the object picked up by the nozzle were detected. Lastly, from the detected contours, the distance between the top surface of the droplet for object release and the bottom surface of the object was measured to determine the appropriate amount of nozzle descent. Through the experiments, we verified that the size matching effect worked reasonably well; the average placement error minimizes when the size of the cross-section of the objects is closer to that of the nozzle. We attributed this result to the self-alignment effect. We also confirmed that we could control the attitude of the object when we matched the shape of the nozzle to that of the sample. These results support the feasibility of the developed vision feedback system, which uses the capillary force gripper for heterogeneous and complex-shaped micro-objects in flexible electronics, micro-electro-mechanical systems (MEMS), soft robotics, soft matter, and biomedical fields.

Funder

Yokohama National University Publication Support Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3