Assessment of Hydrological Response to Climatic Variables over the Hindu Kush Mountains, South Asia

Author:

Masood Muhammad Umer1,Haider Saif2ORCID,Rashid Muhammad2ORCID,Naseer Waqar2,Pande Chaitanya B.345ORCID,Đurin Bojan6ORCID,Alshehri Fahad5,Elkhrachy Ismail7ORCID

Affiliation:

1. Geological Engineering Department, Montana Technological University, Butte, MT 59701, USA

2. Centre of Excellence in Water Resources Engineering, University of Engineering and Technology, Lahore 54890, Pakistan

3. Institute of Energy Infrastructure, Universiti Tenaga Nasional, Kajang 43000, Malaysia

4. New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah 64001, Thi-Qar, Iraq

5. Abdullah Alrushaid Chair for Earth Science Remote Sensing Research, Geology and Geophysics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

6. Department of Civil Engineering, University North, 48000 Koprivnica, Croatia

7. Civil Engineering Department, College of Engineering, Najran University, King Abdulaziz Road, Najran 66454, Saudi Arabia

Abstract

The impact of climate extremes, such as heat waves and extreme rainfall, can cause harvest failures, flooding, and droughts that ultimately threaten global food security, harming the region’s economy. Fluctuations in streamflow indicate the sensitivity of streamflow responding to extreme precipitation events and other climatic variables (temperature extremes) that play a significant role in its generation. Pakistan is also considered one of the climate change hotspot regions in the world. The devastating impacts have often occurred in recent decades due to an excess or shortage of streamflow, majorly generated from the Upper Indus Basin (UIB). To better understand climate extremes’ impact on streamflow, this study examined climate extremes and streamflow (Q) changes for three decades: 1990–1999, 2000–2009, and 2010–2019. Observed streamflow and meteorological data from nine sub-catchments across all climatic zones of the UIB were analyzed using RGui (R language coding program) and partial least squares regression (PLSR). Climatic variables were estimated, including precipitation extremes, temperature extremes, and potential evapotranspiration. The Mann–Kendal test was applied to the climatic indices, revealing that precipitation increased during the last 30 years, while maximum and minimum temperatures during the summer months decreased in the Karakoram region from 1990 to 2019. The spatiotemporal trend of consecutive dry days (CDD) indicated a more increasing tendency from 1990 to 2019, compared to the consecutive wet days (CWD), which showed a decreasing trend. PLSR was applied to assess the relation between climatic variables (extreme P, T indices, and evapotranspiration). It was found that the dominant climatic variables controlling annual streamflow include the r95p (very wet days) and R25mm (heavy precipitation days), maximum precipitation event amount, CWD, PRCPTOT (annual total precipitation), and RX5 (maximum five-day precipitation). The TXn (Min Tmax) and Tmax mean (average maximum temperature) dominate streamflow variables. Moreover, the impact of evapotranspiration (ET) on variations in streamflow is more pronounced in arid catchments. Precipitation is the predominant factor influencing streamflow generation in the UIB, followed by temperature. From streamflow quantification, it was found that climate-driven annual streamflow decreased during 1999–2019 in comparison to 1990–1999, with an increase in a few catchments like Kalam, which increased by about 3.94% from 2000 to 2010 and 10.30% from 2010 to 2019, and Shigar, which increased by 0.48% from 2000 to 2009 and 37.37% from 2010 to 2019 concerning 1990–1999. These variations were due to changes in these climatic parameters. The PLSR approach enables the identification of linkages between climatic variables and streamflow variability and the prediction of climate-driven floods. This study contributes to an enhanced identification and hydroclimatological trends and projections.

Funder

University North, Croatia

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference81 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3