A Moiré Removal Method Based on Peak Filtering and Image Enhancement

Author:

Qi Wenfa1,Yu Xinquan2,Li Xiaolong34,Kang Shuangyong5

Affiliation:

1. Wangxuan Institute of Computer Technology, Peking University, Beijing 100871, China

2. School of Computer Science and Engineering, Ministry of Education Key Laboratory of Information Technology, Guangdong Province Key Laboratory of Information Security Technology, Sun Yat-sen University, Guangzhou 510006, China

3. Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China

4. Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, China

5. Beijing Institute of Information Application Technology, Beijing 100044, China

Abstract

Screen photos often suffer from moiré patterns, which significantly affect their visual quality. Although many deep learning-based methods for removing moiré patterns have been proposed, they fail to recover images with complex textures and heavy moiré patterns. Here, we focus on text images with heavy moiré patterns and propose a new demoiré approach, incorporating frequency-domain peak filtering and spatial-domain visual quality enhancement. We find that the content of the text image mainly lies in the central region, whereas the moiré pattern lies in the peak region, in the frequency domain. Based on this observation, a peak-filtering algorithm and a central region recovery strategy are proposed to accurately locate and remove moiré patterns while preserving the text parts. In addition, to further remove the noisy background and paint the missing text parts, an image enhancement algorithm utilising the Otsu method is developed. Extensive experimental results show that the proposed method significantly removes severe moiré patterns from images with better visual quality and lower time cost compared to the state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3