Sparse Bayesian Neural Networks: Bridging Model and Parameter Uncertainty through Scalable Variational Inference

Author:

Hubin Aliaksandr1234ORCID,Storvik Geir24

Affiliation:

1. Bioinformatics and Applied Statistics, Norwegian University of Life Sciences, 1433 Ås, Norway

2. Department of Mathematics, University of Oslo, 0316 Oslo, Norway

3. Research Administration, Ostfold University College, 1757 Halden, Norway

4. Norwegian Computing Center, 0373 Oslo, Norway

Abstract

Bayesian neural networks (BNNs) have recently regained a significant amount of attention in the deep learning community due to the development of scalable approximate Bayesian inference techniques. There are several advantages of using a Bayesian approach: parameter and prediction uncertainties become easily available, facilitating more rigorous statistical analysis. Furthermore, prior knowledge can be incorporated. However, the construction of scalable techniques that combine both structural and parameter uncertainty remains a challenge. In this paper, we apply the concept of model uncertainty as a framework for structural learning in BNNs and, hence, make inferences in the joint space of structures/models and parameters. Moreover, we suggest an adaptation of a scalable variational inference approach with reparametrization of marginal inclusion probabilities to incorporate the model space constraints. Experimental results on a range of benchmark datasets show that we obtain comparable accuracy results with the competing models, but based on methods that are much more sparse than ordinary BNNs.

Publisher

MDPI AG

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3