Calculating Insurance Claim Reserves with an Intuitionistic Fuzzy Chain-Ladder Method

Author:

Andrés-Sánchez Jorge De1ORCID

Affiliation:

1. Social and Business Research Laboratory, Universitat Rovira i Virgili, Campus de Bellissens, 43204 Reus, Spain

Abstract

Estimating loss reserves is a crucial activity for non-life insurance companies. It involves adjusting the expected evolution of claims over different periods of active policies and their fluctuations. The chain-ladder (CL) technique is recognized as one of the most effective methods for calculating claim reserves in this context. It has become a benchmark within the insurance sector for predicting loss reserves and has been adapted to estimate variability margins. This variability has been addressed through both stochastic and possibilistic analyses. This study adopts the latter approach, proposing the use of the CL framework combined with intuitionistic fuzzy numbers (IFNs). While modeling with fuzzy numbers (FNs) introduces only epistemic uncertainty, employing IFNs allows for the representation of bipolar data regarding the feasible and infeasible values of loss reserves. In short, this paper presents an extension of the chain-ladder technique that estimates the parameters governing claim development through intuitionistic fuzzy regression, such as symmetric triangular IFNs. Additionally, it compares the results obtained with this method with those derived from the stochastic chain ladder by England and Verrall.

Funder

Spanish Science and Technology Ministry: "Sostenibilidad, digitalizacion e innovacion: nuevos retos en el derecho del seguro"

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3