Modulated Memory Network for Video Object Segmentation

Author:

Lu Hannan1,Guo Zixian1,Zuo Wangmeng1

Affiliation:

1. Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China

Abstract

Existing video object segmentation (VOS) methods based on matching techniques commonly employ a reference set comprising historical segmented frames, referred to as ‘memory frames’, to facilitate the segmentation process. However, these methods suffer from the following limitations: (i) Inherent segmentation errors in memory frames can propagate and accumulate errors when utilized as templates for subsequent segmentation. (ii) The non-local matching technique employed in top-leading solutions often fails to incorporate positional information, potentially leading to incorrect matching. In this paper, we introduce the Modulated Memory Network (MMN) for VOS. Our MMN enhances matching-based VOS methods in the following ways: (i) Introducing an Importance Modulator, which adjusts memory frames using adaptive weight maps generated based on the segmentation confidence associated with each frame. (ii) Incorporating a Position Modulator that encodes spatial and temporal positional information for both memory frames and the current frame. The proposed modulator improves matching accuracy by embedding positional information. Meanwhile, the Importance Modulator mitigates error propagation and accumulation by incorporating confidence-based modulation. Through extensive experimentation, we demonstrate the effectiveness of our proposed MMN, which also achieves promising performance on VOS benchmarks.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Reference70 articles.

1. Weston, J., Chopra, S., and Bordes, A. (2014). Memory networks. arXiv.

2. Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv.

3. Oh, S.W., Lee, J.Y., Xu, N., and Kim, S.J. (November, January 27). Video object segmentation using space-time memory networks. Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Republic of Korea.

4. Li, Y., Shen, Z., and Shan, Y. (2020, January 23–28). Fast Video Object Segmentation using the Global Context Module. Proceedings of the European Conference on Computer Vision, Glasgow, UK.

5. Seong, H., Hyun, J., and Kim, E. (2020, January 23–28). Kernelized Memory Network for Video Object Segmentation. Proceedings of the European Conference on Computer Vision, Glasgow, UK.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3