Organic Contaminants in Zooplankton of Italian Subalpine Lakes: Patterns of Distribution and Seasonal Variations

Author:

Pascariello Simona,Mazzoni Michela,Bettinetti RobertaORCID,Manca MarinaORCID,Patelli MartinaORCID,Piscia RobertaORCID,Valsecchi SaraORCID,Polesello StefanoORCID

Abstract

Zooplankton is a key node in many trophic webs, both for food that for persistent organic contaminants that can accumulate in biota. Zooplankton of different size was seasonally sampled for two years in three deep Italian subalpine lakes (Maggiore, Como, Iseo) with the aim of determining the concentrations of perfluoroalkyl substances (PFAS), DDT, and PCB, and assessing the seasonality impacts on contaminants concentrations. In general, Lake Maggiore showed the highest concentrations for each group of contaminants, with mean values of 7.6 ng g−1 ww for PFAS, 65.0 ng g−1 dw for DDT, and 65.5 ng g−1 dw for PCB. When considering the composition pattern, perfluorooctane sulfonate (PFOS) was detected in 96% of the samples and it was the predominant PFAS compound in all of the lakes. pp’ DDE was the most detected congener among DDTs and their metabolites, while for PCBs, the prevalent group was hexa-CB that constituted 35.4% of the total PCB contamination. A seasonal trend was highlighted for all contaminant groups with concentrations in colder months greater than in spring and summer; it was evident that the contaminant concentrations were more dependent from seasonality than from size, trophic levels, and taxa composition of zooplankton. Principal component analysis showed that one of the main driver for the accumulation of most of the studied contaminants is their lipophilicity, except for perfluorooctanoic acid (PFOA) and octachlorobiphenyl.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3