Plant Nutrition under Climate Change and Soil Carbon Sequestration

Author:

Elbasiouny HebaORCID,El-Ramady HassanORCID,Elbehiry FathyORCID,Rajput Vishnu D.ORCID,Minkina TatianaORCID,Mandzhieva SaglaraORCID

Abstract

The climate is one of the key elements impacting several cycles connected to soil and plant systems, as well as plant production, soil quality, and environmental quality. Due to heightened human activity, the rate of CO2 is rising in the atmosphere. Changing climatic conditions (such as temperature, CO2, and precipitation) influence plant nutrition in a range of ways, comprising mineralization, decomposition, leaching, and losing nutrients in the soil. Soil carbon sequestration plays an essential function—not only in climate change mitigation but also in plant nutrient accessibility and soil fertility. As a result, there is a significant interest globally in soil carbon capture from atmospheric CO2 and sequestration in the soil via plants. Adopting effective management methods and increasing soil carbon inputs over outputs will consequently play a crucial role in soil carbon sequestration (SCseq) and plant nutrition. As a result, boosting agricultural yield is necessary for food security, notoriously in developing countries. Several unanswered problems remain regarding climate change and its impacts on plant nutrition and global food output, which will be elucidated over time. This review provides several remarkable pieces of information about the influence of changing climatic variables on plant nutrients (availability and uptake). Additionally, it addresses the effect of soil carbon sequestration, as one of climate change mitigations, on plant nutrition and how relevant management practices can positively influence this.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3