Durability Assessment of ETICS: Comparative Evaluation of Different Insulating Materials

Author:

Landolfi RobertoORCID,Nicolella MaurizioORCID

Abstract

The External Thermal Insulation Composite System (ETICS) is a common cladding technology that is widely used thanks to its well-known advantages. Despite previous studies dealing with ETICS durability in real-building case studies or involving accelerated ageing tests in climatic chambers, little progress has been made in the knowledge of the long-term durability of the system. In order to realize optimized maintenance plans for this component, the durability of the whole system, and of the most-used insulating materials for the ETICS (i.e., cork, polyurethane, rock wool, glass wool, grey EPS, and fiberfill wood), has been investigated. Based on previous experiments on ageing cycles, different climatic chambers were used to accelerate performance decay by simulating natural outdoor exposure in order to assess different physical and thermal characteristics (thermal transmittance, decrement factor, time shift, water absorption, thermal resistance, and conductivity). Recorded trends show that materials with lower thermal conductivity exhibit lower performance decay, and vice versa. The durability of the ETICS with different insulating materials (as the only variable in the different samples) was evaluated in order to quantify service life and then correctly plan maintenance interventions. Life-cycle assessment must take into account service life and durability for each material of the system. A higher durability of insulating materials allows for the execution of less maintenance interventions, with the loss of less performance over time. This study shows the physical and thermal behavior of the ETICS during its service life, comparing the differences induced by the most-used insulating materials. As a result of accelerated ageing cycles, the analyzed ETICS reveals a low grade of decay and measured performances show little degradation; for thermal conductivity, differences between the measured and the declared conductivities by technical datasheet were observed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference49 articles.

1. Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sectorhttps://www.unenvironment.org/resources/publication/2019-global-status-report-buildings-and-construction-sector

2. New Report: The Building and Construction Sector Can Reach Net Zero Carbon Emissions by 2050. World GBC 2019https://www.worldgbc.org/news-media/WorldGBC-embodied-carbon-report-published

3. Energy Performance of Buildings Directivehttps://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en#:~:text=Buildings%20are%20responsible%20for%20approximately,building%20stock%20is%20energy%20inefficient

4. Influence of rendering type on the environmental characteristics of expanded polystyrene-based external thermal insulation composite system;Bartosz;Sustainability,2020

5. 97% of Buildings in the Eu Need to Be Upgradedhttps://www.bpie.eu/wp-content/uploads/2017/12/State-of-the-building-stock-briefing_Dic6.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3