Dynamic Resource Optimization for Energy-Efficient 6G-IoT Ecosystems

Author:

Ansere James Adu1ORCID,Kamal Mohsin2ORCID,Khan Izaz Ahmad3ORCID,Aman Muhammad Naveed4ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Sunyani Technical University, Sunyani P.O. Box 206, Ghana

2. Electrical Engineering Department, National University of Computer and Emerging Sciences, Lahore 54770, Pakistan

3. Department of Computer Science, Bacha Khan University, Charsadda 24420, Pakistan

4. School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract

The problem of energy optimization for Internet of Things (IoT) devices is crucial for two reasons. Firstly, IoT devices powered by renewable energy sources have limited energy resources. Secondly, the aggregate energy requirement for these small and low-powered devices is translated into significant energy consumption. Existing works show that a significant portion of an IoT device’s energy is consumed by the radio sub-system. With the emerging sixth generation (6G), energy efficiency is a major design criterion for significantly increasing the IoT network’s performance. To solve this issue, this paper focuses on maximizing the energy efficiency of the radio sub-system. In wireless communications, the channel plays a major role in determining energy requirements. Therefore, a mixed-integer nonlinear programming problem is formulated to jointly optimize power allocation, sub-channel allocation, user selection, and the activated remote radio units (RRUs) in a combinatorial approach according to the channel conditions. Although it is an NP-hard problem, the optimization problem is solved through fractional programming properties, converting it into an equivalent tractable and parametric form. The resulting problem is then solved optimally by using the Lagrangian decomposition method and an improved Kuhn–Munkres algorithm. The results show that the proposed technique significantly improves the energy efficiency of IoT systems as compared to the state-of-the-art work.

Funder

University of Nebraska–Lincoln

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3