Abstract
Management of backwash water (BW) generated from sand filtration of groundwater naturally contaminated with iron (Fe), manganese (Mn), and radium (Ra) remains a challenge worldwide. The present study investigated the effectiveness of a low-cost clay ceramic filter for BW recycling along with residual sludge utilization for Ra removal from BW. A 15 day continuous ceramic filtration process operated at a constant flux of 2000 L/m2/d (83 LMH) showed 99% removal of Fe, Mn, and turbidity. The treated BW was found suitable for recycling back to the sand filters. Subsequently, the residual sand filter backwash sludge (BS) was collected, characterized by scanning electron microscopy (SEM) and X-ray diffraction, and examined as a potential adsorbent to the Ra. Results showed that the sludge constituted heterogeneous basic elements, with higher percentages of iron and manganese oxides. The sludge can be classified as typical mesoporous and poorly crystalline minerals consisting primarily of quartz and Mn2O3. Over 60% of Ra from the initial 2.1 bq/L could be removed by sludge in 30 min at neutral pH. The adsorption kinetics of sludge described well by the pseudo-second order model and Ra adsorption on the sludge were mainly controlled by chemisorption rate-controlling steps, intraparticle diffusion, and external mass transfer processes. Treatment of BW by low-cost clay ceramic filters and the utilization the BS for Ra removal would be a sustainable sand filter BW management practice.
Funder
Deanship of Scientific Research, Qassim University, Saudi Arabia
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献