In Pursuit of New Spaces for Threatened Mammals: Assessing Habitat Suitability for Kashmir Markhor (Capra falconeri cashmeriensis) in the Hindukush Range

Author:

Khattak Romaan HayatORCID,Teng Liwei,Ahmad Shakeel,Bari FathulORCID,Rehman Ejaz Ur,Shah Altaf Ali,Liu Zhensheng

Abstract

Natural wild habitats are either destroyed or shrunk due to human interventions. Therefore, habitat evaluation is crucial for managing wildlife populations and designing robust conservation strategies. Species presence data and geographic information system (GIS) coupled with ground-breaking powerful statistical techniques have made such assessments possible. We used maximum entropy modeling (MaxEnt) to identify suitable habitats for Kashmir markhor (Capra falconeri cashmeriensis) in Malakand Division, Pakistan. MaxEnt was applied to 169 markhor sighting points and topographical and current bioclimatic variables. Results showed that the accuracy of the MaxEnt model was good (AUC = 0.889). Of the total area studied (8407.09 km2), 22.35% (1878.75 km2) was highly suitable and 32.63% (2743.53 km2) was moderately suitable for markhor. Protected areas including Chitral Gol National Park (CGNP), Tooshi-Sasha Conservancy (TSC), and Gehrait-Golain Conservancy (GGC) and their buffers were included in highly suitable habitats. MaxEnt also predicted highly suitable habitats in Kumrat and Kalam valleys. We believe that moderately suitable habitats identified in Jinjeret, Ursoon, Birir valley, and Bumborait valley have the potential to host markhor populations. Based on the results obtained in the current study, we strongly recommend expanding the current protected areas (PAs) network in the study area and strengthening it by inclusive conservation management with local communities.

Funder

This study was financially supported by the Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, People’s Republic of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3