Abstract
In this paper, we investigate the coupled band gaps created by the locking phenomenon between the electric and flexural waves in piezoelectric composite plates. To do that, the distributed piezoelectric materials should be interconnected via a ‘global’ electric network rather than the respective ‘local’ impedance. Once the uncoupled electric wave has the same wavelength and opposite group velocity as the uncoupled flexural wave, the desired coupled band gap emerges. The Wave Finite Element Method (WFEM) is used to investigate the evolution of the coupled band gap with respect to propagation direction and electric parameters. Further, the bandwidth and directionality of the coupled band gap are compared with the LR and Bragg gaps. An indicator termed ratio of single wave (RSW) is proposed to determine the effective band gap for a given deformation (electric, flexural, etc.). The features of the coupled band gap are validated by a forced response analysis. We show that the coupled band gap, despite directional, can be much wider than the LR gap with the same overall inductance. This might lead to an alternative to adaptively create band gaps.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献