Coupled Mode Design of Low-Loss Electromechanical Phase Shifters

Author:

Abebe Nathnael S.1ORCID,Pai Sunil1ORCID,Hwang Rebecca L.1ORCID,Broaddus Payton1ORCID,Miao Yu1ORCID,Solgaard Olav1ORCID

Affiliation:

1. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA

Abstract

Micro-electromechanical systems (MEMS) have the potential to provide low-power phase shifting in silicon photonics, but techniques for designing low-loss devices are necessary for adoption of the technology. Based on coupled mode theory (CMT), we derive analytical expressions relating the loss and, in particular, the phase-dependent loss, to the geometry of the MEMS phase shifters. The analytical model explains the loss mechanisms of MEMS phase shifters and enables simple optimization procedures. Based on that insight, we propose phase shifter geometries that minimize coupling power out of the waveguide. Minimization of the loss is based on mode orthogonality of a waveguide and phase shifter modes. We numerically model such geometries for a silicon nitride MEMS phase shifter over a silicon nitride waveguide, predicting less than −1.08 dB loss over a 2π range and −0.026 dB loss when optimized for a π range. We demonstrate this design framework with a custom silicon nitride process and achieve −0.48 dB insertion loss and less than 0.05 dB transmission variation over a π phase shift. Our work demonstrates the strength of the coupled mode approach for the design and optimization of MEMS phase shifters.

Funder

Office of the Vice Provost for Graduate Education, Stanford University

Air Force Office of Scientific Research

Publisher

MDPI AG

Reference37 articles.

1. Self-configuring universal linear optical component [Invited];Miller;Photonics Res.,2013

2. Single-chip microprocessor that communicates directly using light;Sun;Nature,2015

3. Recent advances in silicon photonic integrated circuits;Bowers;Next-Gener. Opt. Commun. Compon.-Sub-Syst. Syst. V,2016

4. Linear programmable nanophotonic processors;Harris;Optica,2018

5. System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing;Laplatine;Sens. Actuators B Chem.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3