A Bayesian Method for Dynamic Origin–Destination Demand Estimation Synthesizing Multiple Sources of Data

Author:

Yu Hang,Zhu SenlaiORCID,Yang Jie,Guo YuntaoORCID,Tang TianpeiORCID

Abstract

In this paper a Bayesian method is proposed to estimate dynamic origin–destination (O–D) demand. The proposed method can synthesize multiple sources of data collected by various sensors, including link counts, turning movements at intersections, flows, and travel times on partial paths. Time-dependent demand for each O–D pair at each departure time is assumed to satisfy the normal distribution. The connections among multiple sources of field data and O–D demands for all departure times are established by their variance-covariance matrices. Given the prior distribution of dynamic O–D demands, the posterior distribution is developed by updating the traffic count information. Then, based on the posterior distribution, both point estimation and the corresponding confidence intervals of O–D demand variables are estimated. Further, a stepwise algorithm that can avoid matrix inversion, in which traffic counts are updated one by one, is proposed. Finally, a numerical example is conducted on Nguyen–Dupuis network to demonstrate the effectiveness of the proposed Bayesian method and solution algorithm. Results show that the total O–D variance is decreasing with each added traffic count, implying that updating traffic counts reduces O–D demand uncertainty. Using the proposed method, both total error and source-specific errors between estimated and observed traffic counts decrease by iteration. Specifically, using 52 multiple sources of traffic counts, the relative errors of almost 50% traffic counts are less than 5%, the relative errors of 85% traffic counts are less than 10%, the total error between the estimated and “true” O–D demands is relatively small, and the O–D demand estimation accuracy can be improved by using more traffic counts. It concludes that the proposed Bayesian method can effectively synthesize multiple sources of data and estimate dynamic O–D demands with fine accuracy.

Funder

the Humanities and Social Science Foundation of the Ministry of education in China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3