The TRAX Light-Rail Train Air Quality Observation Project

Author:

Mendoza DanielORCID,Crosman ErikORCID,Mitchell LoganORCID,Jacques Alexander,Fasoli Benjamin,Park Andrew,Lin JohnORCID,Horel JohnORCID

Abstract

Observing air quality from sensors onboard light rail cars in Salt Lake County, Utah began as a pilot study in 2014 and has now evolved into a five-year, state-funded program. This metropolitan region suffers from both elevated ozone levels during summer and high PM2.5 events during winter. Pollution episodes result predominantly from local anthropogenic emissions but are also impacted by regional transport of dust, chemical precursors to ozone, and wildfire smoke, as well as being exacerbated by the topographical features surrounding the city. Two electric light-rail train cars from the Utah Transit Authority light-rail Transit Express (“TRAX”) system were outfitted with PM2.5 and ozone sensors to measure air quality at high spatial and temporal resolutions in this region. Pollutant concentration data underwent quality control procedures to determine whether the train motion affected the readings and how the sensors compared against regulatory sensors. Quality assurance results from data obtained over the past year show that TRAX Observation Project sensors are reliable, which corroborates earlier preliminary validation work. Three case studies from summer 2019 are presented to illustrate the strength of the finely-resolved air quality observations: (1) an elevated ozone event, (2) elevated particulate pollution resulting from 4th of July fireworks, and (3) elevated particle pollution during a winter time inversion event. The mobile observations were able to capture spatial gradients, as well as pollutant hotspots, during both of these episodes. Sensors have been recently added to a third light rail train car, which travels on a north–south oriented rail line, where air quality was unable to be monitored previously. The TRAX Observation Project is currently being used to provide reliable pollutant data for health studies and inform urban planning efforts. Links to real-time data displays and updated information on the quality-controlled data from this study are available on the webpage for the Department of Atmospheric Sciences at the University of Utah.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3