Abstract
The architecture, engineering, construction, and operation (AECO) industry is evolving rapidly. In particular, technological advancements and lessons learned from the COVID-19 pandemic are shaping the industry’s future. Various artificial intelligence (AI), building information modeling (BIM), and Internet of Things (IoT) techniques have contributed to the industry’s modernization by enabling more self-reliable, self-automated, self-learning, time-saving, and cost-effective processes throughout the various life cycle phases of a smart building or city. As a result, the concept of digital twins (DTs) has recently emerged as a potential solution to optimize the AECO sector to achieve the required cyber-physical integration, particularly following the pandemic. Based on a systematic review, the study develops and proposes theoretical models that examine the evolution of DTs in the context of BIM, cutting-edge technologies, platforms, and applications throughout the project’s life cycle phases. This study demonstrates DTs’ high potential as a comprehensive approach to planning, managing, predicting, and optimizing AECO projects that will achieve more Sustainable Development Goals (SDGs). However, while DTs offer many new opportunities, they also pose technical, societal, and operational challenges that must be addressed.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献