Determining the Location of Shared Electric Micro-Mobility Stations in Urban Environment

Author:

Jaber Ahmed1ORCID,Ashqar Huthaifa23ORCID,Csonka Bálint1ORCID

Affiliation:

1. Department of Transport Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

2. Civil Engineering Department, Faculty of Engineering, Arab American University, Jenin P.O. Box 240, Palestine

3. AI@Columbia, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA

Abstract

Locating shared electric micro-mobility stations in urban environments involves balancing multiple objectives, including accessibility, profitability, sustainability, operational costs, and social considerations. This study investigates traveler preferences regarding shared electric micro-mobility stations, focusing on factors influencing their location decisions. The study used the Analytic Hierarchy Process (AHP) model to analyze the criteria and determine their relative importance in influencing the location decisions of shared electric micro-mobility stations as evaluated by experts in transportation fields. The examined criteria are proximity to public transportation, accessibility to key destinations, demographics (e.g., age, and income), safety, land use, and pedestrian and cyclist infrastructure. Using the AHP model, the importance and ranking of each criterion were established. Results indicate that the availability and quality of sidewalks and bike lanes in the vicinity, along with the proximity to popular destinations like shopping centers and tourist attractions, emerge as the most influential criteria. The least important criteria were the demographics such as the young age percentage in the area and the average income of the surrounding population. These findings underscore the critical importance of well-maintained infrastructure for pedestrian and cyclist mobility, as well as the need for convenient access to high-traffic areas. Such insights provide valuable guidance for informed decision making regarding the optimal placement of shared electric micro-mobility stations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3