Parametric Analysis of Rainfall-Induced Loess Soil Slope Due to the Rainwater Infiltration

Author:

Liu Yang,Tian Gang,Wang Shijun,Satyanaga AlfrendoORCID,Zhai QianORCID

Abstract

Hydraulic properties (such as soil–water characteristic curves (SWCC) and hydraulic conductivity function (HCF)) play an important role in evaluating the stability of unsaturated soil slopes. Loess soils are widely distributed in Gansu Province in China, and most of them are in unsaturated conditions due to the deep groundwater table (G.W.T). In this study, twenty-eight sets of data published in the literature were analyzed to develop the upper and lower bounds of the SWCC for loess soil in Gansu. The variation of HCF for the loess soil was estimated from the upper and lower bounds curve developed in this study. Subsequently, numerical analyses incorporating scenarios considering different SWCCs, HCFs, and rainfall conditions were conducted for investigating the effects of those factors on the rainfall-induced slope stability. The results of analyses indicate that the infiltration plays an important role in the rainfall-induced slope stability. Higher permeable soil leads to a larger infiltration amount, which, in turn, results in a lower safety factor. In addition, the effect of the hydraulic property on the rainfall-induced slope stability decreases with the increase in slope angle.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3