Waste Removal Efficiencies of Floating Macrophytes for Restoration of Polluted Stream: An Experimental Analysis

Author:

Mahajan Bharati1,Shastri Sameer2,Londhe Shreenivas3

Affiliation:

1. Department of Technology, Savitribai Phule Pune University, Pune 411007, India

2. Department of Civil Engineering, Sinhgad College of Engineering, Vadgaon, Pune 411041, India

3. Department of Civil Engineering, Vishwakarma Institute of Information Technology, Kondava, Pune 411048, India

Abstract

Freshwater sources are affected by a diverse range of pollutants, which increases the demand for effective remediation. Aquatic phytoremediation is a nature-based solution. It has the potential to provide efficient, adaptable, and multi-targeted treatment of polluted waters. The aim of this research is to evaluate non-mechanized, low-cost onsite treatment of waste water intrusions. It includes an experimental set up with three replicates. Each consists of a modified flow pattern under outdoor conditions. Experimental set up A and B were provided with macrophytes, water lettuce and duckweed, respectively, with plant coverage at 50% and 90%. Experimental set up C was a controlled set up without macrophytes. The highest removal of BOD, COD and Total solids by using water lettuce were observed to be 89%, 77% and 38.5%, respectively. By using duckweed, the highest removal of BOD, COD and Total solids were observed at 88%, 66% and 27.59%, respectively. Removal was also observed in Set up C for BOD, COD and Total solids; its efficiency was 48%, 47% and 25%, respectively. Set up A can be recommended for treating wastewater intrusion, so that wastewater will purify to a to satisfactory to disposal standard level before mixing in river water. The area available in the stream itself can be used as a treatment zone.

Publisher

MDPI AG

Subject

General Medicine

Reference33 articles.

1. Wastewater engineering: An Overview;Tchobanoglous;Management,1991

2. Power density analysis by using soft computing techniques for microbial fuel cell;Singh;J. Environ. Treat. Tech.,2019

3. Performance of a dual chamber microbial fuel cell using sodium chloride as catholyte;Singh;Pollution,2020

4. Performance assessment of local aquatic macrophytes for domestic wastewater treatment in Nigerian communities: A review;Justin;Heliyon,2022

5. Optimization and performance evaluation of microbial fuel cell by varying agar concentration using different salts in salt bridge medium;Singh;Arch. Mater. Sci. Eng.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3