Relationship between Lightning and Aerosol Optical Depth over the Uttarakhand Region in India: Thermodynamic Perspective

Author:

Gautam Alok Sagar,Joshi Abhishek,Chandra Sagarika,Dumka Umesh ChandraORCID,Siingh Devendraa,Singh Ram Pal

Abstract

The current study is mainly focused on the monthly variation in the lightning flash rate (LFR) and related thermodynamic parameters using the data for the years 2000–2013, and the trend of lightning variation is explored. Lightning data are used from a lightning imaging sensor (LIS) and an optical transient detector (OTP) boarded on the tropical rainfall measuring mission (TRMM). Additionally, aerosol optical depth (AOD) data at 550 nm for the same period were considered from a Moderate Resolution Imaging Spectroradiometer (MODIS). The assessment of lightning and AOD using monthly data makes it difficult to study seasonal contributions, and higher-resolution (hourly) data may be more appropriate, but unfortunately, no data were available with a higher resolution than monthly. The dependency of LFR is also investigated using thermodynamic/dynamic parameters. The LFR shows a moderate correlation with a correlation coefficient of 0.56, 0.62, and 0.63 for AOD, CAPE, and vertical velocity, respectively. The increasing AOD in the pre-monsoon season is associated with higher lightning flash rates over this region. The possible sources of aerosols that cause an increase in lightning activities are identified from the classification of aerosols based on the characteristic values of the AOD and the Ångström exponent. The thermodynamic relation of the Product of Bowen ratio with the sum of the precipitation rate and evaporation rate has been used as a proxy to evaluate the lightning flash rate density over Srinagar, Uttarakhand region (78.55° E–79.05° E, 29.97° N–30.47° N), with nine models from the Coupled Model Inter-comparison Project-Phase 5 (CMIP5). The model-simulated LFR has also been used for the projection of lightning in the late 21st century, and the projected LFR over the study area shows a 7.41% increase during the (2079–2088) period as compared to the historic period (1996–2005). The results of the study region indicate caution in using any single climate variable as a proxy for projecting a change in the lightning–climate relationships in the scenario of global warming.

Publisher

MDPI AG

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3