Abstract
The current study is mainly focused on the monthly variation in the lightning flash rate (LFR) and related thermodynamic parameters using the data for the years 2000–2013, and the trend of lightning variation is explored. Lightning data are used from a lightning imaging sensor (LIS) and an optical transient detector (OTP) boarded on the tropical rainfall measuring mission (TRMM). Additionally, aerosol optical depth (AOD) data at 550 nm for the same period were considered from a Moderate Resolution Imaging Spectroradiometer (MODIS). The assessment of lightning and AOD using monthly data makes it difficult to study seasonal contributions, and higher-resolution (hourly) data may be more appropriate, but unfortunately, no data were available with a higher resolution than monthly. The dependency of LFR is also investigated using thermodynamic/dynamic parameters. The LFR shows a moderate correlation with a correlation coefficient of 0.56, 0.62, and 0.63 for AOD, CAPE, and vertical velocity, respectively. The increasing AOD in the pre-monsoon season is associated with higher lightning flash rates over this region. The possible sources of aerosols that cause an increase in lightning activities are identified from the classification of aerosols based on the characteristic values of the AOD and the Ångström exponent. The thermodynamic relation of the Product of Bowen ratio with the sum of the precipitation rate and evaporation rate has been used as a proxy to evaluate the lightning flash rate density over Srinagar, Uttarakhand region (78.55° E–79.05° E, 29.97° N–30.47° N), with nine models from the Coupled Model Inter-comparison Project-Phase 5 (CMIP5). The model-simulated LFR has also been used for the projection of lightning in the late 21st century, and the projected LFR over the study area shows a 7.41% increase during the (2079–2088) period as compared to the historic period (1996–2005). The results of the study region indicate caution in using any single climate variable as a proxy for projecting a change in the lightning–climate relationships in the scenario of global warming.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献