Abstract
Smoke inhalation poses a serious health threat to firefighters (FFs), with potential effects including respiratory and cardiac disorders. In this work, environmental and physiological data were collected from FFs, during experimental fires performed in 2015 and 2019. Extending a previous work, which allowed us to conclude that changes in heart rate (HR) were associated with alterations in the inhalation of carbon monoxide (CO), we performed a HR analysis according to different levels of CO exposure during firefighting based on data collected from three FFs. Based on HR collected and on CO occupational exposure standards (OES), we propose a classifier to identify CO exposure levels through the HR measured values. An ensemble of 100 bagged classification trees was used and the classification of CO levels obtained an overall accuracy of 91.9%. The classification can be performed in real-time and can be embedded in a decision fire-fighting support system. This classification of FF’ exposure to critical CO levels, through minimally-invasive monitored HR, opens the possibility to identify hazardous situations, preventing and avoiding possible severe problems in FF’ health due to inhaled pollutants. The obtained results also show the importance of future studies on the relevance and influence of the exposure and inhalation of pollutants on the FF’ health, especially in what refers to hazardous levels of toxic air pollutants.
Funder
Fundação para a Ciência e a Tecnologia
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献