Incorporating Negative Sample Training for Ship Detection Based on Deep Learning

Author:

Gao Lianru,He Yiqun,Sun Xu,Jia Xiuping,Zhang BingORCID

Abstract

While ship detection using high-resolution optical satellite images plays an important role in various civilian fields—including maritime traffic survey and maritime rescue—it is a difficult task due to influences of the complex background, especially when ships are near to land. In current literatures, land masking is generally required before ship detection to avoid many false alarms on land. However, sea–land segmentation not only has the risk of segmentation errors, but also requires expertise to adjust parameters. In this study, Faster Region-based Convolutional Neural Network (Faster R-CNN) is applied to detect ships without the need for land masking. We propose an effective training strategy for the Faster R-CNN by incorporating a large number of images containing only terrestrial regions as negative samples without any manual marking, which is different from the selection of negative samples by targeted way in other detection methods. The experiments using Gaofen-1 satellite (GF-1), Gaofen-2 satellite (GF-2), and Jilin-1 satellite (JL-1) images as testing datasets under different ship detection conditions were carried out to evaluate the effectiveness of the proposed strategy in the avoidance of false alarms on land. The results show that the method incorporating negative sample training can largely reduce false alarms in terrestrial areas, and is superior in detection performance, algorithm complexity, and time consumption. Compared with the method based on sea–land segmentation, the proposed method achieves the absolute increment of 70% of the F1-measure, when the image contains large land area such as the GF-1 image, and achieves the absolute increment of 42.5% for images with complex harbors and many coastal ships, such as the JL-1 images.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3