Layer-by-Layer Nano-assembly: A Powerful Tool for Optical Fiber Sensing Applications

Author:

Rivero Pedro,Goicoechea Javier,Arregui FranciscoORCID

Abstract

The ability to tune the composition of nanostructured thin films is a hot topic for the design of functional coatings with advanced properties for sensing applications. The control of the structure at the nanoscale level enables an improvement of intrinsic properties (optical, chemical or physical) in comparison with the traditional bulk materials. In this sense, among all the known nanofabrication techniques, the layer-by-layer (LbL) nano-assembly method is a flexible, easily-scalable and versatile approach which makes possible precise control of the coating thickness, composition and structure. The development of sensitive nanocoatings has shown an exceptional growth in optical fiber sensing applications due to their self-assembling ability with oppositely charged components in order to obtain a multilayer structure. This nanoassembly technique is a powerful tool for the incorporation of a wide variety of species (polyelectrolytes, metal/metal oxide nanoparticles, hybrid particles, luminescent materials, dyes or biomolecules) in the resultant multilayer structure for the design of high-performance optical fiber sensors. In this work we present a review of applications related to optical fiber sensors based on advanced LbL coatings in two related research areas of great interest for the scientific community, namely chemical sensing (pH, gases and volatile organic compounds detection) as well as biological/biochemical sensing (proteins, immunoglobulins, antibodies or DNA detection).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3