Sulfur Dioxide Degradation by Composite Photocatalysts Prepared by Recycled Fine Aggregates and Nanoscale Titanium Dioxide

Author:

Chen Xue-FeiORCID,Kou Shi-CongORCID

Abstract

To alleviate the heavy burden on landfilling, construction and demolition wastes (C&DWs) are recycled and reused as aggregates in cementitious materials. However, the inherent characteristics of recycled fine aggregates (RFA), such as the high crushing index and high-water absorption, magnify the reusing difficulty. Nevertheless, attributing to the high porosity and high level of calcium hydroxides existing in the old mortar, RFA is featured with a high specific surface area and a high alkalinity. These features are useful to augment the total photo-degradation of SO2 by nano-TiO2 (NT) intermixed mortar, leading RFA to be an excellent potential carrier to load nano-TiO2 and prepare the composite photocatalyst. Hence, this study proposed to load NT onto the surface of RFAs and river sands (RSs) (the control) by the soaking method, preparing composite photocatalysts denoted as NT@RFA and NT@RS, respectively. The prepared composite photocatalysts were then utilized as sands in photocatalytic mortar to evaluate for SO2 degradation. Experiments identified a 50% higher amount of NT was loaded onto the surface of FRA relative to the control. This higher loading amount plus higher alkalinity ultimately translated into a higher photocatalytic activity. In addition, the mortar containing NT@RFA exhibited 46.3% higher physiochemical absorption and 23.9% higher photocatalytic activity than that containing NT@RS. In addition, the durability, embodied by the reuse and anti-abrasive properties, of NT@RFA exceeded that of NT@RS. The overall findings reveal that the NT@RFA not only garners beneficial effect from the high porosity but also generates positive effect from the high alkalinity. Though a number of studies deal with building materials with NT, this study is the first to load NT onto RFA and prepare composite photocatalysts which were then used as fine aggregates in building materials. Consequently, this study proves the potential high-added-value reusability of RFA in green construction materials and provides a low-cost, high-efficiency approach to degrade atmospheric SO2.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3