The Influence of Initiator Concentration on Selected Properties on Poly-N-Vinylcaprolactam Nanoparticles

Author:

Gola Agnieszka,Niżniowska Aleksandra,Musiał WitoldORCID

Abstract

The thermosensitive polymers of N-vinylcaprolactam P1, P2, P3, P4, and P5 were synthesized via the surfactant free precipitation polymerization (SFPP) at 70 °C in the presence of cationic initiator 2,2’-azobis[2-methylpropionamidine] dihydrochloride (AMPA). The influence of various concentrations of initiator AMPA on particle size, aggregation and lower critical temperature solution (LCST) was investigated by dynamic light scattering (DLS) measurement. The conductivity was measured in the course of the synthesis and during temperature decrease of the reaction mixtures. The polymers were characterized by Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), 1H NMR, and thermogravimetric analysis. Thermal parameters of the degradations process were investigated using thermogravimetric analysis (TGA/DTA) under non-isothermal conditions in N2 atmosphere. The samples were characterized by powder X-ray diffraction analysis (PXRD).The hydrodynamic diameter (HD), polydispersity index (PDI) and zeta potential (ZP) were measured in aqueous dispersions of the synthesized polymers in temperature 18–45 °C. HD and PDI values at 18 °C were 137.23 ± 67.65 nm (PDI = 0.53 ± 0.18), 83.40 ± 74.46 nm (PDI = 0.35 ± 0.08), 22.11 ± 0.29 nm (PDI = 0.45 ± 0.05), 29.27 ± 0.50 nm (PDI = 0.41 ± 0.04), 39.18 ± 0.57 nm (PDI = 0.38 ± 0.01) for P1, P2, P3, P4, and P5, respectively. The aqueous solutions of the obtained polymers at 18–45 °C had a positive charge. ZP’s for P1, P2, P3, P4, and P5 polymers at 18 °C were 11.64 ± 4.27 mV, 12.71 ± 3.56 mV, 3.24 ± 0.10 mV, 0.77 ± 0.28 mV, 1.78 ± 0.56 mV respectively. The LCST range was between 32 and 38 °C. We conclude that the concentration of initiator affects the size of obtained polymeric spheres and theirs LCST.

Funder

Wroclaw Medical University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3