Early Tree Growth in Reclaimed Mine Soils in Appalachia USA

Author:

Dallaire Kara,Skousen JeffreyORCID

Abstract

Surface mining disturbs hundreds of hectares of land every year in many areas of the world, thereby altering valuable, ecologically-diverse forests. Reforestation of these areas after mining helps to restore ecosystem functions and land value. In Appalachia, native topsoil is normally replaced on the surface during reclamation, but waivers allow for brown and gray sandstone materials to be used as topsoil substitutes. Numerous studies report the growth of trees in these substitute mine soil materials, but few studies have compared the height of trees grown in reclaimed mine soils to the heights of trees grown in native soils. This study determined the growth of red oak (Q. rubra L.), white oak (Quercus alba L.), and tulip poplar (Liriodendron tulipifera L.) in two mine soil types which were compared to projected growth in native soils. Heights of tree seedlings in native soils at 11 years were estimated from site indices (SI) from USDA Soil Survey data. At the mine sites, areas with brown and gray mine soils (one site with a mulch treatment) had 12 tree species planted and growth was measured annually for 11 years. Mine soil pH after 11 years was 5.3 for brown mine soils, 6.6 for gray mine soils, 7.0 for mulched mine soils, and 4.1 to 5.2 for native forest soils. After 11 years, tree heights in gray mine soils were significantly lower (0.5 m) than tree heights in brown mine soils (2.8 to 4 m) for all three species. Trees in mulched mine soils were up to 0.7 m taller than trees in un-mulched brown mine soils. After 11 years, red oak height was 6.3 m in native soils and 3 m in brown and mulched mine soils (52% lower); white oak was 7.3 m tall in native soils compared to 3.6 m in brown mine soils (50% lower); and tulip poplar was 11.5 m tall in native soils and 3.5 to 4 m tall in brown and mulched mine soils (70% lower). In gray mine soils, trees were not growing at all. While the trees in brown mine soils are growing, tree growth has not reached projected levels of tree growth in native soils during the first 11 years after planting. The purpose of forestry reclamation is to restore ecosystem diversity and function. This study showed that one measure of ecosystem function, tree growth, was 50% lower on reclaimed mine soils than native forest soils. Maturing mine soils may develop properties over time that are similar to native soils and, with the increased rooting depth, may provide conditions where increased tree growth rates and height may be attained during the next several decades.

Publisher

MDPI AG

Subject

Forestry

Reference55 articles.

1. Impacts of Extractive Industry and Infrastructure on Forests: Global Synthesis Reporthttp://www.climateandlandusealliance.org/reports/impacts-of-extractive-industry-and-infrastructure-on-forests/

2. Forestshttps://www.wri.org/our-work/topics/forests

3. Calculation of mine reclamation bond based on the dominant factors affecting land destruction;Cheng;Disaster Adv.,2017

4. Reclamation of surface mines;Skousen,2013

5. Forest restoration following surface mining disturbance: challenges and solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3